Which option would make this solid?

E: None of the nets would make the solid

Question 22

The diagram shows a small rectangular field. If Linda runs from A to B to D to C to A, how far does she run?

Simplify the surd $3\sqrt{56}$ completely

- **A**: $12\sqrt{14}$
- **B**: $5\sqrt{14}$
- **C**: $6\sqrt{14}$
- **D**: $6\sqrt{28}$
- E: None of these

Question 24

The length of x equals

- **A**: 6cm
- **B**: √6*cm*
- C: $5\sqrt{2}cm$
- **D**: $2\sqrt{5}cm$
- E: None of these

Question 25

The rectangle box has dimensions as shown. What is the length \overline{AG} ?

- **A**: $2\sqrt{26}$
- **B**: $4\sqrt{6}$
- **C**: $2\sqrt{3}$
- **D**: $\sqrt{16}$
- **E**: None of these

Question 26

Sam bought a car valued at \$7700. One year later the car's value had decreased by $^2/_{7}$. What is the new value of the car?

- A: \$2200
- **B**: \$5500
- C: \$9900
- **D**: \$4400
- E: None of these

If Density = Mass ÷ Volume, what is the Mass of the solid in the diagram if its Density is 1.2gm / cm³?

A: 50gm

B: 60gm

C: 72gm

D: 38.4gm

E: None of these

Question 28

What is the speed in m/s of a car that travels 30km in 20 minutes?

B: 150 m/s

C: 90 m/s

D: 540 m/s

E: None of these

Question 29

If $R = \frac{(S+T)P}{3}$ then T equals

A:
$$\frac{3R-S}{P}$$

$$\mathbf{B}: \frac{PR}{3} - S$$

C:
$$\frac{3R}{R} + S$$

B:
$$\frac{PR}{3} - S$$
 C: $\frac{3R}{P} + S$ **D**: $\frac{3R + S}{P}$ **E**: $\frac{3R}{P} - S$

E:
$$\frac{3R}{P} - S$$

Question 30

Solve the inequation for x

$$\frac{5(9-x)}{3} + 1 < 11$$

A:
$$x < 3$$

B:
$$x > 3$$

C:
$$x > -3$$

D:
$$x > 1^4/_5$$

Question 31

Solve for x

$$\frac{4x-3}{5} - \frac{2x-3}{2} = -2$$

A:
$$x = 1 \frac{11}{18}$$

B:
$$x = 5 \frac{1}{2}$$

C:
$$x = -5 \frac{1}{2}$$

A:
$$x = 1 \frac{11}{18}$$
 B: $x = 5 \frac{1}{2}$ **C**: $x = -5 \frac{1}{2}$ **D**: $x = 14 \frac{1}{2}$ **E**: $x = -14 \frac{1}{2}$

E:
$$x = -14 \frac{1}{2}$$

Which equation could only be the equation of the graph?

A:
$$y = 3x + 2$$

B:
$$y = -3x - 2$$

C:
$$y = 3x - 2$$

D:
$$y = -3 + 2$$

E:
$$y = -x - 2$$

Question 33

Which set of coordinates lie outside the shaded area?

$$B:(-1,-6)$$

Question 34

The equation of this graph is:

A:
$$y = -\frac{6x}{5} + 4$$

B:
$$y = \frac{5x}{6} + 4$$

C:
$$y = 5x + 4$$

D:
$$y = -\frac{5x}{6} + 4$$

E:
$$y = \frac{-5x}{6} - 4$$